Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 54: 110316, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38550239

RESUMO

The national-level land cover database is essential to sustainable landscape management, environmental protection, and food security. In Afghanistan, the existing national-level land cover data from 1972, 1993, and 2010 relied on satellite data from diverse sensors adopted three different land cover classification systems. This inconsistent land cover map across the various years leads to the challenge of assessing landscape changes that are crucial for management efforts. To address this challenge, a 19-year national-level land cover dataset from 2000 to 2018 was developed for the first time to aid policy development, settlement planning, and the monitoring of forests and agriculture across time. In the development of the 19 year span of land cover data products, a state-of-the-art remote sensing approach, employing a harmonized classification scheme was implemented through the utilization of Google Earth Engine (GEE). Publicly accessible Landsat imagery and additional geospatial covariates were integrated to produce an annual land cover database for Afghanistan. The generated dataset bridges historical data gaps and facilitates robust land cover change information. The annual land cover database is now accessible through https://rds.icimod.org/. This repository ensures that the annual land cover data is readily available to all users interested in comprehending the dynamic land cover changes happening in Afghanistan.

2.
PLoS One ; 19(2): e0289437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38354171

RESUMO

Monitoring is essential to ensure that environmental goals are being achieved, including those of sustainable agriculture. Growing interest in environmental monitoring provides an opportunity to improve monitoring practices. Approaches that directly monitor land cover change and biodiversity annually by coupling the wall-to-wall coverage from remote sensing and the site-specific community composition from environmental DNA (eDNA) can provide timely, relevant results for parties interested in the success of sustainable agricultural practices. To ensure that the measured impacts are due to the environmental projects and not exogenous factors, sites where projects have been implemented should be benchmarked against counterfactuals (no project) and control (natural habitat) sites. Results can then be used to calculate diverse sets of indicators customized to monitor different projects. Here, we report on our experience developing and applying one such approach to assess the impact of shaded cocoa projects implemented by the Instituto de Manejo e Certificação Florestal e Agrícola (IMAFLORA) near São Félix do Xingu, in Pará, Brazil. We used the Continuous Degradation Detection (CODED) and LandTrendr algorithms to create a remote sensing-based assessment of forest disturbance and regeneration, estimate carbon sequestration, and changes in essential habitats. We coupled these remote sensing methods with eDNA analyses using arthropod-targeted primers by collecting soil samples from intervention and counterfactual pasture field sites and a control secondary forest. We used a custom set of indicators from the pilot application of a coupled monitoring framework called TerraBio. Our results suggest that, due to IMAFLORA's shaded cocoa projects, over 400 acres were restored in the intervention area and the community composition of arthropods in shaded cocoa is closer to second-growth forests than that of pastures. In reviewing the coupled approach, we found multiple aspects worked well, and we conclude by presenting multiple lessons learned.


Assuntos
DNA Ambiental , Tecnologia de Sensoriamento Remoto , Brasil , Agricultura , Florestas , Biodiversidade , Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos
3.
Environ Manage ; 59(5): 752-761, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28124092

RESUMO

Collaborative adaptive management is a process for making decisions about the environment in the face of uncertainty and conflict. Scientists have a central role to play in these decisions. However, while scientists are well trained to reduce uncertainty by discovering new knowledge, most lack experience with the means to mitigate conflict in contested situations. To address this gap, we drew from our efforts coordinating a large collaborative adaptive management effort, the Sierra Nevada Adaptive Management Project, to offer advice to our fellow environmental scientists. Key challenges posed by collaborative adaptive management include the confusion caused by multiple institutional cultures, the need to provide information at management-relevant scales, frequent turnover in participants, fluctuations in enthusiasm among key constituencies, and diverse definitions of success among partners. Effective strategies included a dedication to consistency, a commitment to transparency, the willingness to communicate frequently via multiple forums, and the capacity for flexibility. Collaborative adaptive management represents a promising, new model for scientific engagement with the public. Learning the lessons of effective collaboration in environmental management is an essential task to achieve the shared goal of a sustainable future.


Assuntos
Conservação dos Recursos Naturais , Comportamento Cooperativo , Tomada de Decisões , Humanos , Pesquisadores , Incerteza
4.
Environ Pollut ; 182: 343-56, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23974164

RESUMO

Ozone concentration spatial patterns remain largely uncharacterized across the extensive wilderness areas of the Sierra Nevada, CA, despite being downwind of major pollution sources. These natural areas, including four national parks and four national forests, contain forest species that are susceptible to ozone injury. Forests stressed by ozone are also more vulnerable to other agents of mortality, including insects, pathogens, climate change, and ultimately fire. Here we analyze three years of passive ozone monitor data from the southern Sierra Nevada and interpolate landscape-scale spatial and temporal patterns during the summer-through-fall high ozone concentration period. Segmentation analysis revealed three types of ozone exposure sub-regions: high, low, and variable. Consistently high ozone exposure regions are expected to be most vulnerable to forest mortality. One high exposure sub-region has been documented elsewhere as being further vulnerable to increased drought and fire potential. Identifying such hot-spots of forest vulnerability has utility for prioritizing management.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Ozônio/análise , Poluição do Ar/estatística & dados numéricos , California , Mudança Climática , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...